Математика может открыть определенную
последовательность даже в хаосе
Гертруда Стайн

Давид Гильберт


23 января 1862 родился Давид Гильберт - выдающийся немецкий математик, своими работами внёсший значительный вклад в развитие многих областей математики.

В теории инвариантов Гильбертом доказана основная теорема о существовании конечного базиса системы инвариантов. Данное Гильбертом решение проблемы Дирихле положило начало разработке так называемых прямых методов в вариационном исчислении. Построенная Гильбертом теория интегральных уравнений с симметричным ядром составила одну из основ современного функционального анализа и особенно спектральной теории линейных операторов.

Классические «Основания геометрии» Гильберта стали образцом для дальнейших работ по аксиоматическому построению геометрии. Гильберт не только дал полную аксиоматику геометрии, но также детально проанализировал эту аксиоматику, доказав (построив ряд остроумных моделей) независимость каждой из своих аксиом. Для обоснования всей математики Гильберт разработал строгую логическую теорию доказательств, с помощью которой непротиворечивость математики свелась к доказательству непротиворечивости арифметики.

В физике Гильберт был сторонником строгого аксиоматического подхода и считал, что после аксиоматизации математики необходимо будет проделать эту процедуру с физикой.

Умер 14 февраля 1943 года.